Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana.
نویسندگان
چکیده
When subjected to low oxygen stress, plants accumulate alanine and gamma-aminobutyric acid (GABA). To investigate the function of GABA metabolism under hypoxia and its contribution to alanine accumulation, we studied the genes that encode the two key enzymes of the GABA shunt, glutamate decarboxylase (GAD) and GABA transaminase (GABA-T). Among the five homologous GAD genes found in Arabidopsis thaliana, GAD1 expression was predominantly found in roots, while GAD2 expression was evident in all organs. Expression of the other three GAD genes was generally weak. In response to hypoxia, transcriptional induction was observed for GAD4 only. For GABA-T1, its expression was detected in all organs, but there was no significant transcriptional change under hypoxic conditions. Moreover, we have isolated and characterized Arabidopsis mutants defective in GAD1 and GABA-T1. In gad1 mutants, GAD activity was significantly reduced in roots but was not affected in shoots. In the gaba-t1 mutant, GABA-T activity was decreased to negligible levels in both shoots and roots. These mutants were phenotypically normal under normal growth conditions except for the reduced seed production of the pop2 mutants as described previously. However, metabolite analysis revealed significant changes in GABA content in gad1 and gaba-t1 mutants. The levels of alanine under hypoxic conditions were also affected in the roots of gad1 and gaba-t1 mutants. The partial inhibition of the hypoxia-induced alanine accumulation in roots of these mutants suggests that the GABA shunt is, in part, responsible for the alanine accumulation under hypoxia.
منابع مشابه
Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملمشکلات روشهای موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا
Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...
متن کاملIdentification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses
AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 49 1 شماره
صفحات -
تاریخ انتشار 2008